Catechol–Bisphosphonate Conjugates: New Types of Chelators for Metal Intoxication Therapy

Huasheng Ding, Guangyu Xu, Junbo Wang, Yunlong Zhang, Xihan Wu, and Yuyuan Xie

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Shanghai 201203, People's Republic of China

Received 15 July 2004; revised 6 September 2004

ABSTRACT: Three new types of bisphosphonates conjugated with catechol were synthesized to explore their possibilities for the treatment of metal intoxication. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:549–555, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20056

INTRODUCTION

Human metal intoxication has caused more and more concerns in modern society. Chelating agents are the only choice for the treatment of such cases. Bisphosphonates have received considerable attention because of their high efficiency in binding with various metal ions such as Ca(II), Mg(II), Fe(II), Fe(III), Cu(II), and Al(III) [1]. On the other hand, catecholate ligands bearing a variety of electron withdrawing substituents have been extensively studied for their extraordinary high affinity with high oxidation state metals such as Fe(III) and actinides such as uranium(IV) and thorium(IV) [2].

The purpose of this investigation is to synthesize new chelators that have mixed functional groups such as bisphosphonate and catechol in order to enhance their binding affinity with concerned metal ions. In the previous paper [3], we described the synthesis of conjugates in which bisphosphonate was linked with catechol by an amide bond or a nitrogen–carbon single bond. The preliminary assessment on the chelating potency of those catechol– bisphosphonates conjugates was encouraging, thus it prompted us to further our efforts in studies on this type of chelators. Here, we would like to report the synthesis of new chelating agents (compounds **5**, **9**, **11**) in which bisphoshonate and catechol were linked by carbon–carbon single or double bond directly.

RESULTS AND DISCUSSION

Compounds **5** were prepared as shown in scheme 1. The polybenzyloxy phenylalkenylaldehydes **1** [4] were condensed with tetraethyl bisphosphonates catalyzed by titanium tetrachloride and *N*-methylmorpoline at room temperature [5]. The obtained alkenylidene bisphosphonates **3** were then hydrogenated with Pd/C to give polybenzyloxy phenylalkyl bisphosphonates **4**. Considering the sensitivity of catechol moiety, bromotrimethylsilane (Me₃SiBr) was used to convert the alkyl bisphosphonates **4** into the corresponding trimethylsilyl bisphosphonates, which were readily transformed into the disodium salt of catechol bisphosphonic acids **5** by hydrolysis with aq. NaOH.

Similarly, we synthesized compounds **9** in which the central carbon atom was substituted by alkyl group (Scheme 2). The reduction of the alkenylidene

Correspondence to: Xihan Wu; e-mail: xhwu@mail.shcnc.ac.cn. © 2004 Wiley Periodicals, Inc.

SCHEME 1

bisphosphonates **3** was accomplished by using NaBH₄ at r.t. Compounds **6** thus formed were then alkylated with sodium hydride and alkyl halide to give compounds **7**. Deprotection of **7** with Pd/C in ethanol provided compounds **8**, which was subsequently converted to compounds **9** by similar method as described for preparing of compounds **5**.

A disodium salt of alkenylidene bisphosphonic acid **11** was also prepared (Scheme 3). To obtain the intermediate **10**, several attempts had been made to remove the benzyl group while having the carbon– carbon double bond retained. At last, a thioanisole– trifluoroacetic acid reagent system [6] was found to be most suitable for this purpose, by which

i: NaBH₄; ii: NaH, RX; iii: H₂, Pd/C iv: TMSBr; v: NaOH

i: TFA, PhSMe; ii: TMSBr; iii: NaOH

SCHEME 3

compound **10** was obtained in good purity. Compound **11** was finally prepared by using TMSBr followed by hydrolysis with aq. NaOH.

In summary, three new types of disodium salts of bisphosphonic acid bearing catechol moiety were efficiently prepared, their chelating properties will be reported elsewhere.

EXPERIMENTAL

Melting points were determined using a Büchi 510 melting point apparatus and are uncorrected. NMR, ¹H (400.13 MHz), ¹³C (100.61 MHz), and ³¹P (161.99 MHz), spectra were recorded on a Brucker-400 NMR spectrometer with TMS as internal standard (¹H and ¹³C) and 85% H₃PO₄ as an external standard (³¹P). Microanalyses were carried out on a Leco CHN-2000 elemental analyzer.

Tetraethyl 3,4-dibenzyloxyphenylethenyl-idenebisphosphonate (**3a**)

Under nitrogen, 10 mL of dry THF was placed in a 25 mL flask and was cooled to 0°C. Titanium tetrachloride (380 mg, 2.00 mmol), 3,4-dibenzyloxybenzaldehyde (245 mg, 0.77 mmol), tetraethyl methylenebisphosphonate (288 mg, 0.77 mmol), and Nmethylmorpholine (404 mg, 4.00 mmol) were added successively. The mixture was stirred for 2 h at room temperature and concentrated under vacuum. The residue was partitioned between Et₂O and H₂O. The ether phase was washed with aqueous NaHCO₃ to neutral, dried over anhydrous Na₂SO₄, and evaporated to dryness. The residue was purified by column chromatography (SiO₂, 1/30 MeOH/CH₂Cl₂) to give 320 mg (70.1%) of pale yellow oil **3a**. ¹H NMR $(CDCl_3)$: δ 8.17 (dd, J = 29.5, 47.8 Hz, 1H, CH), 7.77– 6.90 (m, 13H, ArH), 5.21 (s, 2H, ArCH₂O), 5.19 (s, 2H, $ArCH_2O$, 4.22–4.00 (m, 8H, CH_2CH_3), 1.40–1.14 (m, 12H, CH_2CH_3). Compounds **3b–d** were prepared using the method described for the preparation of **3a**.

Tetraethyl 2,3-dibenzyloxyphenylethenyl-idenebisphosphonate (**3b**)

70.0%, pale yellow oil, ¹H NMR (CDCl₃): δ 8.45 (dd, J = 28.7, 47.9 Hz, 1H, CH), 7.44–7.00 (m, 13H, ArH), 5.13 (s, 2H, ArC<u>H</u>₂O), 5.05 (s, 2H, ArC<u>H</u>₂O), 4.16–3.89 (m, 8H, C<u>H</u>₂CH₃), 1.33–1.10 (m, 12H, CH₂C<u>H</u>₃).

Tetraethyl 2,3,4-tribenzyloxyphenylethenyl-idenebisphosphonate (3c)

61.1%, pale yellow oil, ¹H NMR (CDCl₃): δ 8.47 (dd, J = 28.9, 48.3 Hz, 1H, CH), 7.80–6.77 (m, 17H, ArH), 5.15 (s, 2H, ArCH₂O), 5.09 (s, 2H, ArCH₂O), 5.04 (s, 2H, ArCH₂O), 4.20–3.90 (m, 8H, CH₂CH₃), 1.35–1.10 (m, 12H, CH₃).

Tetraethyl 3,4-dibenzyloxyphenylbutadienylidenebisphosphonate (3d)

75.0%, pale yellow oil, ¹H NMR (CDCl₃): δ 8.40–7.69 (m, 3H, Ar–C<u>H</u>=C<u>H</u>–C<u>H</u>), 7.48–6.85 (m, 13H, ArH), 5.23 (s, 2H, ArC<u>H</u>₂O), 5.20 (s, 2H, ArC<u>H</u>₂O), 4.22–4.06 (m, 8H, C<u>H</u>₂CH₃), 1.37–1.32 (t, 12H, CH₂C<u>H</u>₃).

Tetraethyl 3,4-dihydroxyphenylethyl-idenebisphosphonate (4a)

Compound **3a** (2.00 g, 3.40 mmol) was dissolved in ethanol (25 mL), and the solution was hydrogenated over 0.5 g of 10% palladium on carbon at room temperature for 8 h. The catalyst was filtered, the solvent was removed, and the residue was purified by column chromatography on silica gel (1/30 MeOH/CH₂Cl₂) to give 1.30 g (93.2%) of a white solid. mp 71–73°C, ¹H NMR (CDCl₃): δ 6.85 (s, 1H, Ar-2H), 6.75 (d, J = 8.1 Hz, 1H, A-5H), 6.62 (d, J = 8.1 Hz, 1H, Ar-6H), 4.10–4.00 (m, 8H, O–CH₂), 3.13 (dt, J = 6.2, 16.7 Hz, 2H, Ar–CH₂), 2.80–2.60 (m, 1H, CH), 1.30–1.20 (m, 12H, CH₃); ¹³C NMR (CDCl₃): δ 144.31, 143.40, 130.68, 120.41, 116.02, 115.18 (6s, Ph–C), 62.97 (t, OCH₂), 38.87 (t, CH), 30.48 (s, Ph–<u>CH₂</u>), 16.23 (s, CH₃); ³¹P NMR (CDCl₃): δ 24.98; Anal. Calcd for C₁₆H₂₈O₈P₂: C, 46.83; H, 6.82. Found: C, 47.02; H, 6.88. Compounds **4b–d** were prepared using the method described for the preparation of **4a**.

Tetraethyl 2,3-dihydroxyphenylethyl-idenebisphosphonate (**4b**)

90.1%, white solid, mp 134–136°C, ¹H NMR (CDCl₃): δ 9.20 (s, 1H, OH), 6.83–6.67 (m, 3H, ArH), 6.10 (s, 1H, OH), 4.30–4.00 (m, 8H, O–CH₂), 3.23 (dt, *J* = 5.8, 17.0 Hz, 2H, Ar–C<u>H₂</u>), 2.55 (tt, *J* = 5.8, 23.9 Hz, 1H, CH), 1.40–1.20 (m, 12H, CH₃); ³¹P NMR (CDCl₃): δ 26.48; Anal. Calcd for C₁₆H₂₈O₈P₂: C, 46.83; H, 6.82. Found: C, 47.09; H, 6.66.

Tetraethyl 2,3,4-trihydroxyphenylethyl-idenebisphosphonate (**4c**)

87.1%, white solid, mp 127–129°C, ¹H NMR (CDCl₃): δ 6.58 (dd, J = 1.4, 8.4 Hz, 1H, Ar-6H), 6.45 (dd, J = 3.6, 8.4 Hz, 1H, Ar-5H), 4.20–4.00 (m, 8H, O–CH₂), 3.16 (dt, J = 5.9, 16.6 Hz, 2H, Ar–CH₂), 2.69 (tt, J = 5.9, 24.0 Hz, 1H, CH), 1.40–1.20 (m, 12H, CH₃); ³¹P NMR (CDCl₃): δ 26.36; Anal. Calcd for C₁₆H₂₈O₉P₂: C, 45.07; H, 6.57. Found: C, 45.05; H, 6.63.

Tetraethyl 3,4-dihydroxyphenylbutyl-idenebisphosphonate (**4d**)

91.2%, pale yellow oil, ¹H NMR (CDCl₃): δ 6.76 (d, J = 8.2 Hz, 1H, Ar-5H), 6.70 (d, J = 2.2 Hz, 1H, Ar-2H), 6.50 (dd, J = 2.2, 8.2 Hz, 1H, Ar-6H), 4.20–4.08 (m, 8H, OCH₂), 2.48 (t, J = 7.0 Hz, 2H, Ar-C<u>H₂</u>), 2.31 (tt, J = 6.0, 24.4 Hz, 1H, CH₂C<u>H</u>), 2.00–1.80 (m, 4H, Ar-C<u>H₂</u>CH₂CH₂), 1.34–1.27 (m, 12H, CH₃).

3,4-Dihydroxyphenylethylidenebisphosphonic Acid Disodium (**5a**)

Under N_2 , 312 mg (2.05 mmol) of Me_3 SiBr was added dropwise to a solution of compound 4a (154 mg, 0.38 mmol) in 20 mL of dry dichloromethane. The mixture was stirred at r.t. for 30 h . Then the reaction solution was evaporated in vacuum, and the red residue was treated with 3 mL of aqueous NaOH (30 mg, 0.76 mmol). Seventy four milligram of product **9e** (54.5%) was obtained after removing the excess water under reduced pressure and recrystalized from water and methanol as a white solid. mp >300°C, ¹H NMR (D₂O): δ 6.71 (d, J = 1.5 Hz, 1H, Ar-2H), 6.64 (d, J = 8.1 Hz, 1H, Ar-5H), 6.61 (dd, J = 1.5, 8.1 Hz, 1H, Ar-5H), 6.61 (dd, J = 1.5, 8.1 Hz, 1H, Ar-6H), 2.82 (dt, J = 6.2, 16.1 Hz, 2H, CH₂), 2.06 (tt, J = 6.2, 22.0 Hz, 1H, CH); ¹³CNMR (D₂O): δ 143.92, 142.33, 134.88, 121.58, 117.14, 116.42 (6s, Ph–C), 41.24 (s, CH₂), 30.85 (s, CH); ³¹P NMR (D₂O): δ 20.32; Anal. Calcd for C₈H₁₀O₈P₂Na₂.H₂O: C, 26.67; H, 3.33. Found: C, 26.78; H, 3.62. Compounds **5b–d** were prepared using the method described for the preparation of **5a**.

2,3-Dihydroxyphenylethylidenebisphosphonic Acid Disodium (**5b**)

54.4%, white solid, mp > 300°C, ¹H NMR (D₂O): δ 7.15–7.00 (m, 3H, ArH), 3.36 (dt, *J* = 5.9, 16.1 Hz, 2H, CH₂), 2.48 (tt, *J* = 5.9, 22.0 Hz, 1H, CH); ³¹P NMR (D₂O): δ 20.81; Anal. Calcd for C₈H₁₀O₈P₂Na₂· CH₃OH·H₂O: C, 27.55; H, 4.08. Found: C, 27.50; H, 4.04.

2,3,4-Trihydroxyphenylethylidenebisphosphonic Acid Disodium (**5c**)

49.3%, white solid, mp > 300°c, ¹H NMR (D₂O): δ 6.78 (d, J = 8.4 Hz, 1H, Ar-6H), 6.55 (d, J = 8.4 Hz, 1H, Ar-5H), 3.12 (dt, J = 5.6, 16.0 Hz, 2H, CH₂), 2.35 (tt, J = 5.6, 22.5 Hz, 1H, CH); ³¹P NMR (D₂O): δ 21.73; Anal. Calcd for C₈H₁₀O₉P₂Na₂·CH₃OH: C, 27.69; H, 3.59. Found: C, 27.37; H, 3.59.

3,4-Dihydroxyphenylbutylidenebisphosphonic Acid Disodium (**5d**)

47.3%, white solid, mp > 300°C, ¹H NMR (D₂O): δ 6.90 (d, J = 8.1 Hz, 1H, Ar-5H), 6.88 (s, 1H, Ar-2H), 6.78 (dd, J = 1.4, 8.1 Hz, 1H, Ar-6H), 2.58 (t, J = 6.8 Hz, 2H, Ar–CH₂), 2.13 (tt, J = 5.5, 22.8 Hz, 1H, CH(P₂)), 1.98–1.83 (m, 4H, CH₂CH₂CH); ³¹P NMR (D₂O): δ 21.97; Anal. Calcd for C₁₀H₁₄O₈P₂Na₂. CH₃OH: C, 32.83; H, 4.46. Found: C, 32.60; H, 4.28.

Tetraethyl 3,4-dibenzyloxyphenylethyl-idenebisphosphonate (6a)

Compound **3a** (1.99 g, 3.38 mmol) was added to a solution of 0.19 g NaBH₄ (5 mmol) in EtOH (25 mL), and the mixture was stirred at r.t. for 3 h. The ethanol solution was evaporated, and the residue

was partitioned between 2.5 N HCl and EtOAc. Evaporation of the dried organic phase gave an oil that was purified by silica gel chromatography (1/30 MeOH/CH₂Cl₂), to give 1.80 g (90.0%) of colorless oil. ¹H NMR (CDCl₃): δ 7.46–7.27 (m, 10H, <u>ArH</u>–CH₂O), 6.90 (d, J = 2.1 Hz, 1H, O–Ar–2H), 6.83 (d, J = 8.2 Hz, 1H, O–Ar–5H), 6.77 (dd, J = 2.1, 8.2 Hz, 1H, O–Ar–6H), 5.14 (s, 2H, ArC<u>H₂O</u>), 5.13 (s, 2H, ArC<u>H₂O</u>), 4.14–3.98 (m, 8H, C<u>H₂CH₃), 3.14</u> (dt, J = 6.2, 16.6 Hz, 2H, C<u>H₂CH</u>), 2.54 (tt, J = 6.2, 23.8 Hz, 1H, CH₂C<u>H</u>), 1.28–1.22 (m, 12H, CH₂C<u>H₃).</u> Compounds **6b** and **6c** were prepared using the method described for the preparation of **6a**.

Tetraethyl 2,3-dibenzyloxyphenylethyl-idenebisphosphonate (**6b**)

90.1%, colorless oil, ¹H NMR (CDCl₃): δ 7.46–7.27 (m, 10H, <u>ArH</u>–CH₂O), 6.97–6.88 (m, 3H, <u>ArH</u>–CH₂CH), 5.12 (s, 2H, ArC<u>H</u>₂O), 5.08 (s, 2H, ArC<u>H</u>₂O), 4.10– 3.90 (m, 8H, C<u>H</u>₂CH₃), 3.26 (dt, *J* = 7.2, 16.6 Hz, 2H, C<u>H</u>₂CH), 3.09 (tt, *J* = 7.2, 22.7 Hz, 1H, CH₂C<u>H</u>), 1.21–1.16 (m, 12H, CH₂C<u>H</u>₃).

Tetraethyl 2,3,4-tribenzyloxyphenylethyl-idenebisphosphonate (**6c**)

67.0%, pale yellow oil, ¹H NMR (CDCl₃): δ 7.47– 7.27 (m, 15H, <u>ArH</u>–CH₂O), 6.95 (d, J = 8.5 Hz, 1H, O–Ar–6H), 6.68 (d, J = 8.5 Hz, 1H, O–Ar–5H), 5.13 (s, 2H, ArC<u>H</u>₂O), 5.11 (s, 2H, ArC<u>H</u>₂O), 5.02 (s, 2H, ArC<u>H</u>₂O), 4.1–3.9 (m, 8H, C<u>H</u>₂CH₃), 3.20 (dt, J = 7.0, 15.9 Hz, 2H, C<u>H</u>₂CH), 3.05 (tt, J = 7.0, 22.7 Hz, 1H, CH₂C<u>H</u>), 1.20–1.13 (m, 12H, CH₂C<u>H</u>₃).

Tetraethyl 1-(3,4-dibenzyloxybenzyl)-1-methylmethylene-bisphosphonate (**7e**)

Compound 6a (0.78 mg, 1.32 mmol) was added slowly to a suspension of 60% NaH (0.11 g, 2.75 mmol) in 5 mL of dry THF at r.t., and the mixture was stirred for 30 min. Methyl iodide (0.75 g, 5.28 mmol) was then added, and the reaction mixture was stirred at 40°C for 20 h. After CH₂Cl₂/H₂O partition, the organic phase was dried and evaporated. Column chromatography (SiO₂, 1/50 MeOH/CH₂Cl₂) gave 0.39 g (37.6%) of colorless oil 7e. ¹H NMR (CDCl₃): δ 7.46–7.28 (m, 10H, ArH–CH₂O), 6.92 (s, 1H, O-Ar-2H), 6.80 (s, 2H, O-Ar-5, 6H), 5.15 (s, 2H, ArCH₂O), 5.14 (s, 2H, ArCH₂O), 4.14–4.04 (m, 8H, CH_2CH_3), 3.18–3.08 (dd, J = 13.4, 15.8 Hz, 2H, $C(P_2)$ - CH_2), 1.33 (t, J = 16.7 Hz, 3H, $C(P_2)$ - CH_3), 1.27–120 (m, 12H, CH₂CH₃). Compounds **7f-h** were prepared using the method described for the preparation of 7e.

Tetraethyl 1-(3,4-dibenzyloxybenzyl)-1-ethylmethylene-bisphosphonate (**7f**)

37.2%, colorless oil, ¹H NMR (CDCl₃): δ 7.45–7.26 (m, 10H, <u>ArH</u>–CH₂O), 6.95 (d, *J* = 1.7 Hz, 1H, O–Ar–2H), 6.84 (dd, *J* = 1.7, 8.4 Hz, 1H, O–Ar–6H), 6. 81 (d, *J* = 8.4 Hz, 1H, O–Ar–5H), 5.16 (s, 2H, ArC<u>H</u>₂O), 5.14 (s, 2H, ArC<u>H</u>₂O), 4.14–4.00 (m, 8H, OC<u>H</u>₂CH₃), 3.15 (dd, *J* = 12.2, 16.7 Hz, 2H, ArC<u>H</u>₂C(P₂)), 1.88–1.76 (m, 2H, C(P₂)C<u>H</u>₂CH₃), 1.28–1.16 (m, 12H, OCH₂C<u>H</u>₃), 1.12 (t, 3H, *J* = 7.4 Hz, C(P₂)CH₂C<u>H</u>₃).

Tetraethyl 1-(3,4-dibenzyloxybenzyl)-1-phenylmethylene-bisphosphonate (**7g**)

48.7%, colorless oil, ¹H NMR (CDCl₃): δ 7.45–7.19 (m, 15H, <u>Ar</u>–CH₂O), 7.10 (d, J = 2.0 Hz, 1H, O–Ar–2H), 6.98 (dd, J = 2.0, 8.2 Hz, 1H, O–Ar–6H), 6.82 (d, J = 8.2 Hz, 1H, O–Ar–5H), 5.15 (s, 4H, ArC<u>H₂O), 4.04–3.87 (m, 8H, CH₂CH₃), 3.24 (t, J = 16.1 Hz, 4H, C(P₂)-CH₂), 1.14–1.09 (m, 12H, CH₂C<u>H₃).</u></u>

Tetraethyl 1-(2,3-dibenzyloxybenzyl)-1-methylmethylene-bisphosphonate (**7h**)

43.1%, colorless oil, ¹H NMR (CDCl₃): δ 7.45–7.27 (m, 10H, <u>ArH</u>–CH₂O), 7.14 (dd, J = 1.9, 7.3 Hz, 1H, O–Ar–6H), 6.93 (t, J = 7.3, 8.1 Hz, 1H, Ar–5H), 6.90 (dd, J = 1.9, 8.1 Hz, 1H, O–Ar–4H), 5.12 (s, 2H, ArC<u>H</u>₂O), 4.95 (s, 2H, ArC<u>H</u>₂O), 4.20–4.00 (m, 8H, C<u>H</u>₂CH₃), 3.35 (dd, J = 13.5, 16.1 Hz, 2H, C<u>H</u>₂C), 1.40 (t, J = 17.0 Hz, 3H, C(P₂)CH₃), 1.24–1.18 (m, 12H, CH₂C<u>H</u>₃).

Tetraethyl 1-(3,4-dihydroxybenzyl)-1-methylmethylene-bisphosphonate (**8e**)

Compound **7e** (0.51 g, 0.84 mmol) in 10 mL EtOH was hydrogenated over 0.2 g of 10% palladium on carbon at r.t. for 6 h. Then the solution was filtered through Celite, concentrated, and the residue was chromatographed on silica gel (1/20, MeOH/CH₂Cl₂) to yield 0.32 g (89.4%) of white solid **8e**. mp 159–161°C, ¹H NMR (CDCl₃): δ 8.02 (s, 1H, OH), 7.97 (s, 1H, OH), 6.74–6.60 (m, 3H, ArH), 4.22–4.02 (m, 8H, CH₂CH₃), 3.14 (dd, *J* = 13.6, 15.8 Hz, 2H, Ar–CH₂), 1.44 (t, *J* = 16.7 Hz, 3H, C(P₂)CH₃), 1.34–1.21 (m, 12H, CH₂CH₃); ³¹P NMR (CDCl₃): δ 27.05; Anal. Calcd for C₁₇H₃₀O₈P₂: C, 48.11; H, 7.08. Found: C, 48.33; H, 6.83. Compounds **8f–h** were prepared using the method described for the preparation of **8e**.

Tetraethyl 1-(3,4-dihydroxybenzyl)-1-ethylmethylene-bisphosphonate (**8f**)

85.1%, white solid, mp 133–135°C, ¹H NMR (CDCl₃): δ 7.02 (d, J = 2.0 Hz, 1H, Ar-2H), 6.73 (d, J = 8.2 Hz, 1H, Ar-5H), 6.63 (dd, J = 2.0, 8.2 Hz, 1H, Ar-6Hz), 4.19–3.98 (m, 8H, OC<u>H</u>₂CH₃), 3.17 (dd, J = 12.7, 16.7 Hz, 2H, Ar–C<u>H</u>₂), 2.01–1.91 (m, 2H, C(P₂)C<u>H</u>₂CH₃), 1.32–1.18 (m, 15H, OCH₂C<u>H</u>₃, C(P₂)CH₂C<u>H</u>₃); ³¹P NMR (CDCl₃): δ 27.05; Anal. Calcd for C₁₈H₃₂O₈P₂: C, 49.32; H, 7.31. Found: C, 49.30; H, 7.27.

Tetraethyl 1-(3,4-dihydroxybenzyl)-1-phenylmethylene-bisphosphonate (**8g**)

83.7%, white solid, mp 145–147°C, ¹H NMR (CDCl₃): δ 7.44–7.18 (m, 7H, OH, CCH₂<u>ArH</u>), 7.05 (d, *J* = 2.0 Hz, 1H, Ar-2H), 6.78 (dd, *J* = 2.0, 8.1 Hz, 1H, Ar-6H), 6.72 (d, *J* = 8.1 Hz, 1H, Ar-5H), 4.10–3.85 (m, 8H, C<u>H</u>₂CH₃), 3.38–3.18 (m, 4H,CH₂), 1.21–1.11 (m, 12H, CH₃); ³¹P NMR (CDCl₃): δ 26.70; Anal. Calcd for C₂₃H₃₄O₈P₂: C, 55.20; H, 6.80. Found: C, 55.21; H, 6.82.

Tetraethyl 1-(2,3-dihydroxybenzyl)-1-methylmethylene-bisphosphonate (**8h**)

75.8%, white solid, mp 124–126°C, ¹H NMR (CDCl₃): δ 9.55 (s, 1H, OH), 6.82 (dd, J = 1.7, 7.9 Hz, 1H, Ar-6H), 6.74 (t, J = 7.6, 7.9 Hz, 1H, Ar-5H), 6.60 (dd, J = 1.7, 7.6 Hz, 1H, Ar-4H), 6.15 (s, 1H, OH), 4.30– 3.90 (m, 8H, CH₂CH₃), 3.23 (t, 2H, Ar–CH₂), 1.45 (t, J = 16.7 Hz, 3H, C(P₂)CH₃), 1.40–1.15 (m, 12H, CH₂CH₃); ³¹P NMR (CDCl₃): δ 29.00; Anal. Calcd for C₁₇H₃₀O₈P₂: C, 48.11; H, 7.08. Found: C, 48.31; H, 7.08.

1-(3,4-Dihydroxybenzyl)-1-methyl-methylenebisphosphonic Acid Disodium (**9e**)

Under N₂, Me₃SiBr (325 g, 2.12 mmol) was added to a stirred solution of compound **8e** (150 mg, 0.35 mmol) in 20 mL of dry CH₂Cl₂ at r.t. After stirring for 30 h, the alkyl bromide byproducts and excess bromotrimethylsilane were removed in vacuo and the residue was treated with 5 mL of aq. NaOH (28 mg, 0.70 mmol). Sixty milligram of product **9e** (47.6%) was obtained after removing the excess water under reduced pressure and recrystalized from water and methanol as a white solid. mp > 300°C, ¹H NMR (D₂O): δ 6.76 (s, 1H, ArH), 6.65 (s, 2H, ArH), 2.87 (t, *J* = 14.5 Hz, 2H, CH₂), 1.10 (t, *J* = 16.1 Hz, 3H, CH₃); ³¹P NMR (D₂O): δ 25.60; Anal. Calcd for C₉H₁₂O₈P₂Na₂·CH₃OH·H₂O: C, 29.55; H, 4.43. Found: C, 29.62; H, 4.51. Compounds **9f-h** were prepared using the method described for the preparation of **9e**.

1-(3,4-Dihydroxybenzyl)-1-ethyl-methylenebisphosphonic Acid Disodium (**9f**)

43.2%, white solid, mp > 300°C, ¹H NMR (D₂O): δ 7.25 (d, J = 1.7 Hz, 1H, Ar-2H), 7.09 (dd, J =1.7, 8.1 Hz, 1H, Ar-6H), 7.04 (dd, J = 1.3, 8.1 Hz, 1H, Ar-5H), 3.30 (t, J = 14.6 Hz, 2H, ArCH₂), 2.00 (m, 2H, CH₂CH₃), 1.36 (t, J = 7.5 Hz, 3H, CH₂CH₃); ³¹P NMR (D₂O): δ 24.33; Anal. Calcd for C₁₀H₁₄O₈P₂Na₂·CH₃OH·H₂O: C, 31.43; H, 4.76. Found: C, 31.51; H, 4.75.

1-(3,4-Dihydroxybenzyl)-1-phenyl-methylenebisphosphonic Acid Disodium (**9g**)

63.7%, white solid, mp > 300°C, ¹H NMR (D₂O): δ 7.80–7.47 (m, 5H, 3-<u>ArH</u>), 7.28 (d, *J* = 2.0 Hz, 1H, 1-Ar–2H), 7.15 (dd, *J* = 2.0, 8.1 Hz, 1H, 1-Ar–6H), 7.04 (d, *J* = 8.1 Hz, 1H, 1-Ar–5H), 3.41 (t, *J* = 16.8 Hz, 2H, CH₂), 3.32 (t, *J* = 16.8 Hz, 2H, CH₂); ³¹P NMR (D₂O): δ 23.49; Anal. Calcd for C₁₅H₁₆O₈P₂Na₂·CH₃OH·1.5H₂O: C, 39.10; H, 4.68. Found: C, 38.94; H, 4.74.

1-(2,3-Dihydroxybenzyl)-1-methyl-methylenebisphosphonic Acid Disodium (**9h**)

42.9%, white solid, mp > 300°C, ¹H NMR (D₂O): δ 7.09–7.05 (m, 3H, ArH), 3.42 (t, J = 15.1 Hz, 2H, CH₂), 1.55 (t, J = 16.1 Hz, 3H, CH₃); ³¹P NMR (D₂O): δ 26.68; Anal. Calcd for C₉H₁₂O₈P₂Na₂·1.5CH₃OH: C, 31.19; H, 4.46. Found: C, 31.06; H, 4.59.

Tetraethyl 2,3-dihydroxyphenylethenyl-idenebisphosphonate (**10**)

A mixture of compound (**3b**) (0.52 g, 0.88 mmol) and thioanisole (5.48 g, 44 mmol) in TFA (2 mL) was kept at room temperature overnight. Then the solution was concentrated in vacuum, and the residue was dissolved in CH₂Cl₂. The solution was washed with saturated NaHCO₃ solution and water, dried (MgSO₄), filtered, concentrated. The residue was purified by chromatography over silica gel (1/30, MeOH/CH₂Cl₂) to yield **10** as a colorless oil (0.16 g, 44.4%). ¹H NMR (CDCl₃): δ 8.12 (dd, J = 24.1, 40.6 Hz, 1H, CH), 7.14 (dt, J = 1.7, 8.1 Hz, 1H, Ar-6H), 7.09 (t, J = 7.4, 8.1 Hz, 1H, Ar-5H), 6.99 (dd, J = 1.7, 7.4 Hz, 1H, Ar-4H), 4.34–4.18 (m, 8H, CH₂), 1.43–1.33 (m, 12H, CH₃); ³¹P NMR (CDCl₃): δ 20.83 (d, J = 52.5 Hz), 15.71 (d, J = 51.0 Hz).

2,3-Dihydroxyphenylethenylidenebisphosphonic Acid Disodium (11)

TMSBr (225 mg, 1.47 mmol) was added dropwise to a solution of bisphosphonate **10** (100 mg, 0.24 mmol) in dry CH₂Cl₂ (10 mL) under N₂. After stirred for 30 h, the reaction solution was concentrated, and the residue was treated with 5 mL of aq. NaOH (20 mg, 0.48 mmol). Then the excess water was removed to give a white precipitate, which was purified by recrystalization from water and methanol to provide product **11** (41 mg, 49.4%) as a white solid. mp >300°C, ¹H NMR (D₂O): δ 7.49–7.33 (m, 1H, CH), 6.90–6.87 (m, 3H, ArH); ³¹P NMR (D₂O): δ 9.01 (d, J = 44.1 Hz), 5.59 (d, J = 45.2 Hz); Anal. Calcd for C₈H₈O₈P₂Na₂·1.5CH₃OH: C, 29.38; H, 3.60. Found: C, 29.68; H, 3.25.

REFERENCES

 [1] (a) Jung, A; Bisaz, S.; Fleish, H. Calcif Tissue Res 1973, 11, 269–280; (b) Boduszek, B.; Dyba, M.; Bojczuk, M. J.; Kiss, T.; Kozlowski, H. J Chem Soc, Dalton Trans 1997, 973–976; (c) Gumienna-Kontecka, E.; Jezierska, J.; Lecouvey, M.; Leroux, Y.; Kozlowski, H. J Inorg Biochem 2002, 89, 13–17; (d) Gumienna-Kontecka, E.; Silvagni, R.; Lipinski, R.; Lecouvey, M.; Marincola, F. C.; Crisponi, G.; Nurchi, V. M.; Leroux, Y.; Kozlowski, H. Inorg Chim Acta 2002, 339, 111–118.

- [2] (a) Rastetter, W. H.; Erickson, T. J.; Venuti, M. C. J Org Chem 1981, 46, 3579–3590; (b) Bergeron, R. J.; Kline, S. J.; Stolowich, N. J.; McGovern, K. A.; Burton, P. S. J Org Chem 1981, 46, 4524–4529; (c) Bergeron, R. J.; Stolowich, N. J; Kline, S. J. J Org Chem 1983, 48, 3432–3439; (d) Pu, Y.; Lowe, C.; Sailer, M.; Vederas, J. C. J Org Chem 1994, 59, 3642–3655; (e) Sofen, S. R.; Abu-Dari, K.; Freyberg, D. P.; Raymond, K. N. J Am Chem Soc 1978, 100, 7882–7887; (f) Sofen, S. R.; Cooper, S. R.; Raymond, K. N. Inorg Chem 1979, 18, 1611–1616.
- [3] Xu, G.; Yang, C.; Liu, B.; Wu, X.; Xie, Y. Heteroatom Chem 2004, 15, 251–257.
- [4] Mendelson, W. L.; Holmes, M.; Dougherty, J. Synth Commun 1996, 26, 593–601.
- [5] Lehnert, W. Terahedron 1974, 30, 301–305.
- [6] Kiso, Y.; Ukawa, K.; Nakamura, S.; Ito, K.; Akita, T. Chem Pharm Bull 1980, 28, 673–676.